1	$(AX=)(17.6-8.4) \div 2 (= 4.6)$		6	M1	where <i>X</i> is the foot of the perpendicular from <i>B</i> to <i>AD</i>
	$0.5 \times (8.4 + 17.6) \times h = 179.4 \text{ or} \\ 0.5 \times `4.6' \times h + 0.5 \times `4.6' \times h + 8.4 \times h = 179.4 \text{ or} \\ 13 \times h = 179.4$			M1	
	$(h =) 179.4 \div `13` (=13.8)$ or $(h =) 358.8 \div `26` (=13.8)$ oe			M1	
	$\tan ABX = \frac{'4.6'}{'13.8'} \text{ or}$ $\tan BAX = \frac{'13.8'}{'4.6'}$			M1	ft their h dep on second M1 $(AB =)\sqrt{4.6'^2 + '13.8'^2} = \sqrt{211.6}$ = (14.546) and one from $\sin ABX = \frac{'4.6'}{'\sqrt{211.6'}}$ or $\sin BAX = \frac{'13.8'}{'\sqrt{211.6'}}$ or $\cos ABX = \frac{'13.8'}{'\sqrt{211.6'}}$ or $\cos BAX = \frac{'4.6'}{'\sqrt{211.6'}}$ or $\sin ABX = \frac{'4.6'}{'\sqrt{211.6'}}$ or $\sin ABX = \frac{'4.6' \times \sin 90}{'\sqrt{211.6'}}$ or $\cos ABX = \frac{'\sqrt{211.6'}}{2\times '\sqrt{211.6'}}$ or
	$(ABX=) \tan^{-1}\left(\frac{'4.6'}{'13.8'}\right) (= 18.4)$ or			M1	
	$(BAX=) \tan^{-1} \left(\frac{'13.8'}{'4.6'}\right) (= 71.6)$				
		108.4		A1	awrt 108.4
l					Total 6 marks

2	$8.5^2 - (8 \div 2)^2 (= 56.25)$ or $\cos x = \frac{4}{8.5}$ oe			M1	or eg cos $A = \frac{8^2 + 8.5^2 - 8.5^2}{2 \times 8 \times 8.5}$
	$\sqrt{56.25''}$ (= 7.5) or $x = \cos^{-1}\left(\frac{4}{8.5}\right)$ (= 61.927)			M1	or eg $(A=)\cos^{-1}\left(\frac{8^2+8.5^2-8.5^2}{2\times8\times8.5}\right)$ (61.927)
	oe				(other angle = 56.144)
	$8 \times "7.5" \div 2$ oe or $0.5 \times 8 \times 8.5 \times \sin "61.927"$			M1	or eg $0.5 \times 8.5 \times 8 \times \sin^{\circ} 61.927$ " oe
		30	4	A1	
· · ·					Total 4 marks

3	$\pi \times 7.2^2 \div 2 \ (= 81.4)$			M1	allow 81.3 – 81.5 for area of semi circle
	"81.4" + 6 (= 13.5) or 12 × 6 (= 72) or "81.4" + 12 (= 6.7)			M1	(dep) allow $13.5 - 13.6$ for the number of boxes needed (NB: $12 \times 6 = 72$ alone is 0 marks)
		No with correct figures	3	A1	
					Total 3 marks

4	$CB = 13\sin 40 \ (= 8.3562)$			M1
	$\frac{1}{2} \times 6 \times "8.35" \times \sin ACB = 22$			M1
	Acute version of $ACB = \sin^{-1} \left(\frac{22}{\frac{1}{2} \times 6 \times "8.35} \right) (= 61.35)$			M1
	<i>ACB</i> = 180 - "61.353" (= 118.647)			M1
	$AB^2 = 6^2 + "8.35"^2 - 2 \times 6 \times "8.35" \times \cos"118.64" (= 153.98)$			M1
		12.4	6	A1 accept 12.3 – 12.5
				Total 6 marks

5	$30 = \frac{27}{1.2 x}$		3	M1	Or for $\frac{27}{30} (= 0.9)$
	$1.2x = \frac{27}{30}$ or $36x = 27$ or $22.5 \div 30$			M1	
		0.75 oe		A1	
					Total 3 marks

6	Gradient of $L_2 = -10 \div -5$ (= 2)		5	M1	Method to find gradient of L_2
	$6 = 2 \times 8 + c \rightarrow c = -10$				
	y = 2x - 10 oe			A1	Equation for L_2
	$0 = 2x - 10 \rightarrow x = 5 \text{ or } (5, 0)$			A1	Finding point A and point B
	$y = 2 \times -3 - 10 \rightarrow y = -16 \text{ or } (-3, -16)$				
	$(Area =) 0.5 \times 5 \times 16$			M1	Method to find area of triangle
	or $(0.5 \times 5 \times 10) + (0.5 \times 10 \times 3)$				
	or $0.5 \times 5 \times \sqrt{265} \times \sin 100.6^{\circ}$				
	or $0.5 \times \sqrt{320} \times \sqrt{265} \times \sin 15.9^{\circ}$				
		40		A1 cao	Dep on M2
					Total 5 marks

7	$\frac{18}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}$		3	M1 for $\frac{18}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}$
	eg $\frac{18(\sqrt{7}-1)}{7-1}$			M1 Dep on M1 for a correct numerator and multiplying out the denominator to 7 – 1 or 6
	$3\sqrt{7} - 3$	$3\sqrt{7} - 3$		A1 Dep on M2 Allow $3(\sqrt{7}-1)$
				Total 3 marks

8	$0.5 \times \pi \times 6^2$ (= 56.54) or 12×6 (= 72)		3	M1
	or $\pi \times 6^2$ oe			
	"72" – "56.54…"			M1 dep M1 for a complete method
		15.5	_	A1 15.4 to 15.5
				Total 3 marks

9	$\frac{1}{2} \times 6 \times 11 \times \sin 118 (= 29.1)$		3	M1	for the area of half of the kite
	eg $2 \times \frac{1}{2} \times 6 \times 11 \times \sin 118$			M1	for a complete method
		58.3		Al	accept 58.2 - 58.3
					Total 3 marks

10	$17.5^2 - 14^2 (= 110.25)$	4	M1 or for use of cosine rule to find one of the angles eg $28^2 = 17.5^2 + 17.5^2 - 2 \times 17.5 \times 17.5 \times \cos A$ or eg $\cos B = \frac{14}{2}$
	$\sqrt{17.5^2 - 14^2} (=10.5)$		$\frac{17.5}{\text{or for rearranging the cosine rule to}}$
			eg cos $A = \frac{1}{2 \times 17.5 \times 17.5}$ or eg $B = \cos^{-1}(\frac{14}{17.5})$ (= 36.86)
	0.5 × 28 × "10.5" oe		M1 or for $0.5 \times 17.5 \times 17.5 \times \sin 106.26$ oe eg $0.5 \times 17.5 \times 28 \times \sin 36.86$
			[clear use of Heron's formula: M1 for $S = 0.5(17.5 + 17.5 + 28)(=31.5)$
		147	M2 for $\sqrt{"31.5"("31.5"-17.5)^2("31.5"-28)}$ oe]
		147	A1 accept awrt 147 Total 4 marks

11	eg $\frac{55}{360} \times \pi \times d = 5$ or $\frac{55}{360} \times \pi \times 2 \times r = 5$ oe OR $\frac{360}{55} \times 5(=32.7)$ oe		4	M1	for a correct equation for the diameter or radius OR for a method to find the circumference of the circle
	eg $d = \frac{5 \times 360}{55\pi} (=10.4)$ or $r = \frac{5 \times 360}{55 \times 2 \times \pi} (= 5.2)$ OR $d = \frac{52}{\pi} (=10.4)$ or $r = \frac{52}{2 \times \pi} (= 5.2)$			M1	for a method to work out the diameter or radius
	(area =) eg $\pi \times \left(\frac{"10.4"}{2}\right)^2$ or $\pi \times ``5.2"^2$	85.2		M1 AI	allow 84.9 - 85.4
					Total 4 marks

12	$\frac{\sin Q}{4.2} = \frac{\sin 18}{1.6} \text{ oe or} \\ 1.6^2 = 4.2^2 + RQ^2 - 2 \times 4.2 \times RQ \times \cos 18 \text{ oe} \\ (3000) = \frac{1}{2} \left(\frac{\sin 18}{1.6} \right)^{-1} $			correct sine ratio - could be rearranged or correct substitution into the cosine rule using angle <i>R</i>
	$\frac{\sin^{-1}\left(4.2 \times \frac{\sin 18}{1.6^{-}}\right) (= 54.2) \text{ or } \sin^{-1}(0.811)}{2 \times 4.2 \times \cos 18 \pm \sqrt{(2 \times 4.2 \times \cos 18)^{2} - 4 \times 1 \times 15.08}}$		M1	
	180 - "54.2" (=125.8) or RQ = 3.0585 and 4.933		M1	This can be implied by the correct value(s) (125.8 or 3.0585) used later
	$(P =) 180 - "125.8" - 18 (=36.2)$ or $RQ = \sqrt{4.2^2 + 1.6^2 - 2 \times 4.2 \times 1.6 \times \cos"36.2"} (= 3.0585)$ or 3.0585 chosen as value from cosine rule above or perpendicular height = 4.2sin"36.2" (= 2.4805) (where "36.2" comes from correct working)		M1	
	(Area =) $\frac{1}{2} \times 4.2 \times 1.6 \times \sin("36.2")$ or (Area =) $\frac{1}{2} \times 4.2 \times "3.0585" \times \sin 18$ or (Area =) $\frac{1}{2} \times 1.6 \times "2.4805"$		MI	
		1.98	A1	awrt 1.98
				Total 6 marks

13	$\frac{1}{2} \times 7 \times h = 42 \text{ oe or } (h =) \frac{42 \times 2}{7} (= 12) \text{ oe or}$ $3.5^{2} + h^{2} = y^{2} \text{ or } h = \sqrt{y^{2} - 3.5^{2}} \text{ oe}$		4	M1	A correct equation involving the height or a correct expression for height – could be in terms of y
	$y^{2} = \left(\frac{7}{2}\right)^{2} + ("12")^{2}$ oe or $\frac{1}{2} \times 7 \times "\sqrt{y^{2} - 3.5^{2}}" = 42$ oe			M1	(indep) use of <i>their</i> height (any found value that they have called 'height')
	$y = \sqrt{\left(\frac{7}{2}\right)^2 + ("12")^2}$ oe			M1	all values must come from a correct method
	Correct answer scores full marks (unless from obvious incorrect working)	12.5		A1	oe eg $\frac{25}{2}$
					Total 4 marks

14	$\sin 52 = \frac{12 \div 2}{r} \text{ or } \mathbf{r} \frac{r}{\sin 90} = \frac{6}{\sin 52} \text{ oe}$ or $\cos(90 - 52) = \frac{12 \div 2}{r} \text{ oe}$ or $(r^2 =)(12 \div 2)^2 + \left(\frac{12 \div 2}{\tan 52}\right)^2$ oe $[r^2 = 6^2 + 4.687^2]$ or $\frac{r}{\sin 38} = \frac{12}{\sin 104}$ oe		4	M1	A correct trig statement for the radius use of tan must also include a correct Pythagoras statement.
	$r = \frac{6}{\sin 52} (=7.614) \text{ oe}$ or $r = \frac{6}{\cos 38} \text{ oe}$ or $(r =)\sqrt{(12 \div 2)^2 + (\frac{12 \div 2}{\tan 52})^2} \left[r = \sqrt{6^2 + 4.687^2}\right] \text{ oe}$ or $\frac{12\sin 38}{\sin 104} \text{ oe}$			M1	A correct method to find the radius of the circle use of tan must also use Pythagoras to find an expression for <i>r</i>
	$(\text{Area} =) \pi \times ("7.61")^2$			M1	the radius must come from a completely correct method
	Correct answer scores full marks (unless from obvious incorrect working)	182		A1	Accept 181 - 183
					Total 4 marks

15	$12 = \frac{1}{2} \times 4.6 \times 8.3 \times \sin ABC$ or $\frac{4.6h}{2} = 12$ (h = 5.217)		5	M1	a correct equation for the area to
	$\frac{12}{2} - \frac{12}{2} + \frac{10}{2} + \frac{10}{2} + \frac{10}{2} = \frac{12}{2} (n = 5.217)$				find angle ABC or to find the
					perpendicular height of the
					triangle.
				M1	A correct method to find angle
	$(BC \text{ sin}^{-1})$ 12 (= 38.947) of or				ABC
	$ABC = \sin^{-1}\left(\frac{12}{\frac{1}{2} \times 4.6 \times 8.3}\right)$ (= 38.947) oe or				or
	$\left(\frac{-\times4.0\times8.3}{2}\right)$				a correct method to find BM^2
	$ABC = \sin^{-1}(0.6286) \ (= 38.947) \text{ or}$				where CMB is 90°
	$ABC = \sin^{-1}\left(\frac{"5.217"}{8.3}\right) (= 38.947)$ or				
	(8.3)				
	$BM^2 = 8.3^2 - "5.217"^2$				
	$AC^{2} = 4.6^{2} + 8.3^{2} - 2 \times 4.6 \times 8.3 \times \cos("38.947")$ [allow cos39°]			M1	a correct start to the cosine rule to
	$10^2 - 20 ((27))$				find length AC
	or $AC^2 = 30.6(627)$				or a fully correct method for BM
	$BM = \sqrt{8.3^2 - "5.217"^2} \ (=6.455)$				
	or $AC = \sqrt{"30.6(6)"}$			A1	A correct value for AC which can
					be the square root of 30.6(6)
	or				-
	5.5(3739)				
	Correct answer scores full marks (unless from obvious incorrect	18.4		A1	Allow answers in range 18.4 to
	working)	10.4		AI	18.45
	working				Total 5 marks
					Total 5 marks

16	$(54-24) \div 2$ (=15) [may be marked on diagram]		5	M1	
	$"15"^{2} - (24 \div 2)^{2} (= 81)$		-	M1	ft their "15" (if > 12)
	$[\text{height} =] \sqrt{"15"^2 - (24 \div 2)^2} (=9)$			M1	ft their "15" (if > 12)
	(24×"9")÷2 oe			M1	figures must be from correct working
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1	allow 107.9 – 108.1
	ALTERNATIVES BELOW				Total 5 marks
16	$(54-24) \div 2$ (=15) [may be marked on diagram]		5	M1	
	or $x = \cos^{-1}\left(\frac{"12"}{"15"}\right) (= 36.86)$			M1	ft their "15" (if > 12)
	or $y = \sin^{-1} \left(\frac{24 \div 2}{"15"} \right) (= 53.13)$				[using Hero's formula $S = 0.5 \times 54$ (= 27) and]
	or $A = \cos^{-1}\left(\frac{15^2 + 15^2 - 24^2}{2 \times 15 \times 15}\right) (= 106.2)$				27 × (27 – 24) × (27 – "15") × (27 – "15")
	or $B = \cos^{-1}\left(\frac{15^2 + 24^2 - 15^2}{2 \times 15 \times 24}\right) (= 36.8)$				
	or "12"tan"36.86" (= 9) (allow 8.9 for these)			M1	ft M2 for
	$(12)^{\circ} \pm \tan(53.13)^{\circ} (= 9)$				their $0.5 \times 24 \times "15" \times \sin"36.86"$ or
	or " 15 " × sin " 36.86 " (= 9)				"15" $0.5 \times "15" \times "15" \times \sin(2 \times "53.13")$ or
	or "15" $\times \cos$ "53.13" (= 9)				(if > $0.5 \times 15^{\circ} \times 15^{\circ} \times in(106.2)$ or 12) $\sqrt{277^{\circ} - 24} \times 15^{\circ} \times in(106.2)$ or
	(24×"9")÷2 oe			M1	$-\frac{12)}{\sqrt{27''(27''-24)(27''-15'')(27''-15'')}}$
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1	allow 107.9 – 108.1
	8/				Total 5 marks

17	$\frac{1}{2}(330+170) \times 240 (= 60\ 000)$ oe or		4	M1 for working out the area of the trapezium
	$\left(\frac{80 \times 240}{2}\right) + (170 \times 240) + \left(\frac{80 \times 240}{2}\right) (= 60\ 000) \text{ oe or}$ $(2 \times 9600) + 40\ 800\ (= 60\ 000) \text{ oe}$			
	$[60\ 000] \div 10\ 000\ (= 6)\ or$ $10\ 000 \times 6\ (= 60\ 000)$			M1 ft their area (must come from a two dimensional area) Allow $\frac{\text{their area}}{10000}$
	49 650 ÷ [6]			
	Correct answer scores full marks (unless from obvious incorrect working)	8275		Al
				Total 4 marks